Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 2324 (2017)

The treatment of iron deficiency without anaemia (in otherwise healthy persons)

  • German E. Clénin
DOI
https://doi.org/10.4414/smw.2017.14434
Cite this as:
Swiss Med Wkly. 2017;147:w14434
Published
14.06.2017

Summary

Iron deficiency is the most widespread and frequent nutritional disorder in the world. It affects a high proportion of children and women in developing countries and is also significantly prevalent in the industrialised world, with a clear predominance in adolescents and menstruating females. Iron is essential for optimal cognitive function and physical performance, not only as a binding site of oxygen but also as a critical constituent of many enzymes. Therefore iron deficiency at all levels – nonanaemic iron deficiency, iron deficiency with microcytosis or hypochromia and iron deficiency anaemia – should be treated. In the presence of normal stores, however, preventative iron administration is inefficient, has side effects and seems to be harmful.

In symptomatic patients with fatigue or in a population at risk for iron deficiency (adolescence, heavy or prolonged menstruation, high performance sport, vegetarian or vegan diet, eating disorder, underweight), a baseline set of blood tests including haemoglobin concentration, haematocrit, mean cellular volume, mean cellular haemoglobin, percentage of hypochromic erythrocytes and serum ferritin levels are important to monitor iron deficiency. To avoid false negative results (high ferritin levels in spite of iron deficiency), an acute phase reaction should be excluded by history and measurement of C-reactive protein. An algorithm leads through this diagnostic process and the decision making for a possible treatment. For healthy males and females aged >15 years, a ferritin cut-off of 30 µg/l is appropriate. For children from 6–12 years and younger adolescents from 12–15 years, cut-offs of 15 and 20 µg/l, respectively, are recommended.

As a first step in treatment, counselling and oral iron therapy are usually combined. Integrating haem and free iron regularly into the diet, looking for enhancers and avoiding inhibitors of iron uptake is beneficial. In order to prevent reduced compliance, mainly as a result of gastrointestinal side effects of oral treatment, the use of preparations with reasonable but not excessive elemental iron content (28–50 mg) seems appropriate. Only in exceptional cases will an intravenous injection be necessary (e.g., concomitant disease needing urgent treatment, repeated failure of first-step therapy).To measure the success of treatment, the basic blood tests should be repeated after 8 to 10 weeks. Patients with repeatedly low ferritin will benefit from intermittent oral substitution to preserve iron stores and from long term follow-up, with the basic blood tests repeated every 6 or 12 months to monitor iron stores. Long-term daily oral or intravenous iron supplementation in the presence of normal or even high ferritin values is, however, not recommended and is potentially harmful.

References

  1. WHO | Micronutrients [Internet]. WHO. [cited 2016 Feb 3]. Available from: http://www.who.int/nutrition/topics/micronutrients/en/
  2. Iron deficiency anaemia: assessment, prevention and control A guide for programme managers.partie i. 6 - WHO_NHD_01.3.pdf [Internet]. [cited 2016 Feb 3]. Available from: http://apps.who.int/iris/bitstream/10665/66914/1/WHO_NHD_01.3.pdf?ua=1
  3. WHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015.WHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015.9789241564960_eng.pdf [Internet]. [cited 2016 Feb 3]. Available from: http://apps.who.int/iris/bitstream/10665/177094/1/9789241564960_eng.pdf?ua=1
  4. Fayet-Moore F, Petocz P, Samman S. Micronutrient status in female university students: iron, zinc, copper, selenium, vitamin B12 and folate. Nutrients. 2014;6(11):5103–16.https://doi.org/10.3390/nu6115103
  5. Milman N. Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol. 1996;63(2):103–35.https://doi.org/10.1016/0925-5710(95)00426-2
  6. Milman N, Ulrik CS, Graudal N, Jordal R. Iron status in young Danes. Evaluation by serum ferritin and haemoglobin in a population survey of 634 individuals aged 14-23 yr. Eur J Haematol. 1997;58(3):160–6.https://doi.org/10.1111/j.1600-0609.1997.tb00942.x
  7. Milman N, Byg KE, Ovesen L. Iron status in Danes 1994. II: Prevalence of iron deficiency and iron overload in 1319 Danish women aged 40-70 years. Influence of blood donation, alcohol intake and iron supplementation. Ann Hematol. 2000;79(11):612–21.https://doi.org/10.1007/s002770000209
  8. Schleiffenbaum BE, Schaer DJ, Burki D, Viollier A-F, Viollier E, Stettler ER, et al. Unexpected high prevalence of metabolic disorders and chronic disease among young male draftees--the Swiss Army XXI experience. Swiss Med Wkly. 2006;136(11-12):175–84.
  9. Andersson M, Egli IM, Zimmerman MB. Eisenmangel. Schweiz Z für Ernährungsmedizin. 2010;2010(1):13–8. Article in German.
  10. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA. 1997;277(12):973–6.https://doi.org/10.1001/jama.1997.03540360041028
  11. Cogswell ME, Looker AC, Pfeiffer CM, Cook JD, Lacher DA, Beard JL, et al. Assessment of iron deficiency in US preschool children and nonpregnant females of childbearing age: National Health and Nutrition Examination Survey 2003-2006. Am J Clin Nutr. 2009;89(5):1334–42.https://doi.org/10.3945/ajcn.2008.27151
  12. Ganz T. Molecular control of iron transport. J Am Soc Nephrol. 2007;18(2):394–400.https://doi.org/10.1681/ASN.2006070802
  13. Petrides P, Löffler G. Eisen. In: Chemie und Pathobiochemie. 6.Auflage ed. Berlin Heidelberg: Springer Verlag; 1998. p. 416 ff.
  14. Ganz T, Nemeth E. Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2012;2(5):a011668.https://doi.org/10.1101/cshperspect.a011668
  15. Hallberg L. Iron requirements, iron balance and iron deficiency in menstruating and pregnant women. In: Iron Nutrition in Health and Disease. John Libbey & Co; London, UK; 1996. p. 165–82.
  16. Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol. 2015;22(3):199–205.https://doi.org/10.1097/MOH.0000000000000132
  17. Yip R. Iron. In: Present Knowledge in Nutrition. 8th ed. Washington DC: ILSI Press; 2001. p. 311–28.
  18. Latunde-Dada GO. Iron metabolism in athletes--achieving a gold standard. Eur J Haematol. 2013;90(1):10–5.https://doi.org/10.1111/ejh.12026
  19. Sandström G, Börjesson M, Rödjer S. Iron deficiency in adolescent female athletes - is iron status affected by regular sporting activity? Clin J Sport Med. 2012;22(6):495–500.https://doi.org/10.1097/JSM.0b013e3182639522
  20. Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38(Suppl 1):20–6.https://doi.org/10.1111/ijlh.12505
  21. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.https://doi.org/10.1038/ng.2996
  22. Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832–43.https://doi.org/10.1056/NEJMra1401038
  23. Davies KJ, Donovan CM, Refino CJ, Brooks GA, Packer L, Dallman PR. Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat. Am J Physiol. 1984;246(6 Pt 1):E535–43.
  24. Finch CA, Miller LR, Inamdar AR, Person R, Seiler K, Mackler B. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest. 1976;58(2):447–53.https://doi.org/10.1172/JCI108489
  25. Hallberg L, Bengtsson C, Lapidus L, Lindstedt G, Lundberg PA, Hultén L. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol. 1993;85(4):787–98.https://doi.org/10.1111/j.1365-2141.1993.tb03225.x
  26. Thomason RW, Almiski MS. Evidence that stainable bone marrow iron following parenteral iron therapy does not correlate with serum iron studies and may not represent readily available storage iron. Am J Clin Pathol. 2009;131(4):580–5.https://doi.org/10.1309/AJCPBAY9KRZF8NUC
  27. Magnusson B, Hallberg L, Rossander L, Swolin B. Iron metabolism and “sports anemia”. I. A study of several iron parameters in elite runners with differences in iron status. Acta Med Scand. 1984;216(2):149–55.https://doi.org/10.1111/j.0954-6820.1984.tb03786.x
  28. Krayenbuehl P-A, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222–7.https://doi.org/10.1182/blood-2011-04-346304
  29. Verdon F, Burnand B, Stubi C-LF, Bonard C, Graff M, Michaud A, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003;326(7399):1124.https://doi.org/10.1136/bmj.326.7399.1124
  30. Vaucher P, Druais P-L, Waldvogel S, Favrat B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ. 2012;184(11):1247–54.https://doi.org/10.1503/cmaj.110950
  31. Burden RJ, Pollock N, Whyte GP, Richards T, Moore B, Busbridge M, et al. Effect of Intravenous Iron on Aerobic Capacity and Iron Metabolism in Elite Athletes. Med Sci Sports Exerc. 2015;47(7):1399–407.https://doi.org/10.1249/MSS.0000000000000568
  32. Garvican LA, Saunders PU, Cardoso T, Macdougall IC, Lobigs LM, Fazakerley R, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sports Exerc. 2014;46(2):376–85.https://doi.org/10.1249/MSS.0b013e3182a53594
  33. DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46(6):1204–15.https://doi.org/10.1249/MSS.0000000000000208
  34. Waldvogel S, Pedrazzini B, Vaucher P, Bize R, Cornuz J, Tissot J-D, et al. Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: a randomized controlled trial. BMC Med. 2012;10(1):8.https://doi.org/10.1186/1741-7015-10-8
  35. McClung JP, Karl JP, Cable SJ, Williams KW, Nindl BC, Young AJ, et al. Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. Am J Clin Nutr. 2009;90(1):124–31.https://doi.org/10.3945/ajcn.2009.27774
  36. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30–9.https://doi.org/10.1038/sj.ejcn.1602479
  37. Brownlie T, 4th, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79(3):437–43.
  38. Bruner AB, Joffe A, Duggan AK, Casella JF, Brandt J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet. 1996;348(9033):992–6.https://doi.org/10.1016/S0140-6736(96)02341-0
  39. Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L. The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J. 2010;9(1):4.https://doi.org/10.1186/1475-2891-9-4
  40. Baumgartner J, Smuts CM, Malan L, Kvalsvig J, van Stuijvenberg ME, Hurrell RF, et al. Effects of iron and n-3 fatty acid supplementation, alone and in combination, on cognition in school children: a randomized, double-blind, placebo-controlled intervention in South Africa. Am J Clin Nutr. 2012;96(6):1327–38.https://doi.org/10.3945/ajcn.112.041004
  41. Domellöf M, Thorsdottir I, Thorstensen K. Health effects of different dietary iron intakes: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res. 2013;57(1):21667.https://doi.org/10.3402/fnr.v57i0.21667
  42. Greig AJ, Patterson AJ, Collins CE, Chalmers KA. Iron deficiency, cognition, mental health and fatigue in women of childbearing age: a systematic review. J Nutr Sci. 2013;2:e14.https://doi.org/10.1017/jns.2013.7
  43. Leonard AJ, Chalmers KA, Collins CE, Patterson AJ. A study of the effects of latent iron deficiency on measures of cognition: a pilot randomised controlled trial of iron supplementation in young women. Nutrients. 2014;6(6):2419–35.https://doi.org/10.3390/nu6062419
  44. Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr. 2007;85(3):778–87.
  45. Effects of Iron Treatment on Cognitive Performance and Working Memory in Non-anemic. Iron-deficient Girls.NZJP-Vol311-2002-3-Lambert.pdf [Internet]. [cited 2016 Feb 3]. Available from: http://www.psychology.org.nz/wp-content/uploads/NZJP-Vol311-2002-3-Lambert.pdf
  46. Lynn R, Harland EP. A positive effect of iron supplementation on the IQS of iron deficient children. Pers Individ Dif. 1998;24(6):883–5. doi:.https://doi.org/10.1016/S0191-8869(97)00219-5
  47. Groner JA, Holtzman NA, Charney E, Mellits ED. A randomized trial of oral iron on tests of short-term memory and attention span in young pregnant women. J Adolesc Health Care. 1986;7(1):44–8.https://doi.org/10.1016/S0197-0070(86)80094-8
  48. Clénin G, Cordes M, Huber A, Schumacher YO, Noack P, Scales J, et al. Iron deficiency in sports - definition, influence on performance and therapy. Swiss Med Wkly. 2015;145:w14196. https://dx.doi.org/10.4414/smw.2015.14196
  49. Clénin G. Eisen im Sport - oft zu wenig, gelegentlich aber auch zu viel. Schweiz Z für Ernährungsmedizin. 2006;2:21–5. Article in German.
  50. Mettler S. Ferrum - ein Mineralstoff im Sport. Schweiz Z für Sportmed und Sportraumatologie. 2004;52:105–14. Article in German.
  51. Lamanca JJ, Haymes EM. Effects of low ferritin concentration on endurance performance. Int J Sport Nutr. 1992;2(4):376–85.https://doi.org/10.1123/ijsn.2.4.376
  52. Yu D, Huo J, Xie L, Wang L. [Meta-analysis of studies on cut-off value of serum ferritin for identifying iron deficiency]. Wei Sheng Yan Jiu. 2013;42(2):228–35. Article in Chinese.
  53. Pitsis GC, Fallon KE, Fallon SK, Fazakerley R. Response of soluble transferrin receptor and iron-related parameters to iron supplementation in elite, iron-depleted, nonanemic female athletes. Clin J Sport Med. 2004;14(5):300–4.https://doi.org/10.1097/00042752-200409000-00009
  54. Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med. 2004;14(3):145–52.https://doi.org/10.1097/00042752-200405000-00007
  55. Fallon KE. Screening for haematological and iron-related abnormalities in elite athletes-analysis of 576 cases. J Sci Med Sport. 2008;11(3):329–36.https://doi.org/10.1016/j.jsams.2007.02.017
  56. Macdougall IC. What is the most appropriate strategy to monitor functional iron deficiency in the dialysed patient on rhEPO therapy? Merits of percentage hypochromic red cells as a marker of functional iron deficiency. Nephrol Dial Transplant. 1998;13(4):847–9.https://doi.org/10.1093/ndt/13.4.847
  57. d’Onofrio G, Zini G, Ricerca BM, Mancini S, Mango G. Automated measurement of red blood cell microcytosis and hypochromia in iron deficiency and beta-thalassemia trait. Arch Pathol Lab Med. 1992;116(1):84–9.
  58. Urrechaga E, Borque L, Escanero JF. Percentage of hypochromic erythrocytes as a potential marker of iron availability. Clin Chem Lab Med. 2011;50(4):685–7.
  59. Hinchliffe RF, Vora AJ, Lennard L. An assessment of methods used in the investigation of iron status: findings in a population of young British South Asian children. J Clin Pathol. 2016;69(4):345–51.
  60. Thomas C, Thomas L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem. 2002;48(7):1066–76.
  61. Brugnara C, Laufer MR, Friedman AJ, Bridges K, Platt O. Reticulocyte hemoglobin content (CHr): early indicator of iron deficiency and response to therapy. Blood. 1994;83(10):3100–1.
  62. Brugnara C, Zurakowski D, DiCanzio J, Boyd T, Platt O. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA. 1999;281(23):2225–30.https://doi.org/10.1001/jama.281.23.2225
  63. d’Onofrio G, Chirillo R, Zini G, Caenaro G, Tommasi M, Micciulli G. Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia. Blood. 1995;85(3):818–23.
  64. Franck S, Linssen J, Messinger M, Thomas L. Potential utility of Ret-Y in the diagnosis of iron-restricted erythropoiesis. Clin Chem. 2004;50(7):1240–2.https://doi.org/10.1373/clinchem.2004.030254
  65. Schumacher YO, Schmid A, König D, Berg A. Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med. 2002;36(3):195–9.https://doi.org/10.1136/bjsm.36.3.195
  66. Magge H, Sprinz P, Adams WG, Drainoni M-L, Meyers A. Zinc protoporphyrin and iron deficiency screening: trends and therapeutic response in an urban pediatric center. JAMA Pediatr. 2013;167(4):361–7.https://doi.org/10.1001/jamapediatrics.2013.751
  67. Baart AM, van Noord PAH, Vergouwe Y, Moons KGM, Swinkels DW, Wiegerinck ET, et al. High prevalence of subclinical iron deficiency in whole blood donors not deferred for low hemoglobin. Transfusion. 2013;53(8):1670–7.https://doi.org/10.1111/j.1537-2995.2012.03956.x
  68. Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.https://doi.org/10.1123/ijsnem.22.2.79
  69. Herklotz R, Lüthi U, Ottiger C, Huber AR. Referenzbereiche in der Hämatologie. Ther Umsch Rev Thérapeutique. 2006;63(1):5–24. Article in German. https://doi.org/10.1024/0040-5930.63.1.5
  70. Bothwell T, Charlton R, Cook J, Finch C. Iron metabolism in man. Oxford UK: Blackwell Scientific Publications; 1979.
  71. Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr. 2003;23(1):283–301.https://doi.org/10.1146/annurev.nutr.23.011702.073139
  72. Zimmermann MB, Biebinger R, Egli I, Zeder C, Hurrell RF. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals. Br J Nutr. 2011;105(8):1245–50.https://doi.org/10.1017/S0007114510004903
  73. Monsen ER. Iron nutrition and absorption: dietary factors which impact iron bioavailability. J Am Diet Assoc. 1988;88(7):786–90.
  74. Proposed nutrient and energy intakes for the European community: a report of the Scientific Committee for Food of the European community. Nutr Rev. 1993;51(7):209–12.
  75. Dietary Reference Intakes (DRIs): Estimated Average Requirements for Groups - 5_Summary Table Tables 1-4.pdf [Internet]. [cited 2016 Feb 3]. Available from: https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/5_Summary%20Table%20Tables%201-4.pdf
  76. Hercberg S, Preziosi P, Galan P. Iron deficiency in Europe. Public Health Nutr. 2001;4(2B):537–45.https://doi.org/10.1079/PHN2001139
  77. Rimon E, Kagansky N, Kagansky M, Mechnick L, Mashiah T, Namir M, et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am J Med. 2005;118(10):1142–7.https://doi.org/10.1016/j.amjmed.2005.01.065
  78. Zimmermann MB, Troesch B, Biebinger R, Egli I, Zeder C, Hurrell RF. Plasma hepcidin is a modest predictor of dietary iron bioavailability in humans, whereas oral iron loading, measured by stable-isotope appearance curves, increases plasma hepcidin. Am J Clin Nutr. 2009;90(5):1280–7.https://doi.org/10.3945/ajcn.2009.28129
  79. DellaValle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12(4):234–9.https://doi.org/10.1249/JSR.0b013e31829a6f6b
  80. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, Manasanch J, et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013;29(4):291–303.https://doi.org/10.1185/03007995.2012.761599
  81. Arzneimittelkompendium der Schweiz. Documed; 2012.
  82. Arzneimittelinformation über Fe-Saccharose (Venofer) [Internet]. [cited 2016 Feb 3]. Available from: http://www.swissmedicinfo.ch/
  83. Arzneimittelinformation über Fe-Carboxymaltose (Ferinject) [Internet]. [cited 2016 Feb 3]. Available from: http://www.swissmedicinfo.ch/
  84. Eisencarboxymaltose. Ritzmann P. Pharmakritik 2010.pk08-10.pdf [Internet]. [cited 2016 Feb 3]. Available from: http://www.infomed.ch/attachments/pk08-10.pdf
  85. Rienso®, Lösung zur intravenösen Injektion (Ferumoxytol) - Swissmedic - [Internet]. [cited 2016 Feb 3]. Available from: https://www.swissmedic.ch/zulassungen/00153/00189/00200/00497/index.html?lang=de
  86. Rienso, Lösung zur intravenösen Injektion - Swissmedic - [Internet]. [cited 2016 Feb 3]. Available from: https://www.swissmedic.ch/marktueberwachung/00135/00166/00707/index.html?lang=de
  87. Demarmels Biasiutti F. SMF Artikel - Schweizerisches Medizin-Forum - Die Regulation des Eisenstoffwechsels [Internet]. 2009 [cited 2016 Feb 3]. Available from: http://medicalforum.ch/index.php?id=644&tx_topiccollection_tccollection%5Baction%5D=show&tx_topiccollection_tccollection%5Bcontroller%5D=Article&cHash=9b2c579bf6a9ef0a06b8f2947b872b83&tx_topiccollection_tccollection%5Barticle%5D=2085
  88. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med. 2013;65:1174–94.https://doi.org/10.1016/j.freeradbiomed.2013.09.001
  89. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008;88(1):7–15.https://doi.org/10.1007/s12185-008-0120-5
  90. Steinboeck F, Hubmann M, Bogusch A, Dorninger P, Lengheimer T, Heidenreich E. The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells. Mutat Res. 2010;688(1-2):47–52.https://doi.org/10.1016/j.mrfmmm.2010.03.006
  91. Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI, et al. Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutat Res. 2009;674(1-2):131–6.https://doi.org/10.1016/j.mrgentox.2008.09.010
  92. Zoller H, Vogel W. Iron supplementation in athletes--first do no harm. Nutrition. 2004;20(7-8):615–9.https://doi.org/10.1016/j.nut.2004.04.006
  93. Chua ACG, Klopcic BRS, Ho DS, Fu SK, Forrest CH, Croft KD, et al. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS One. 2013;8(11):e78850.https://doi.org/10.1371/journal.pone.0078850
  94. Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996;5(7):503–7.
  95. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 2014;23(1):12–31.https://doi.org/10.1158/1055-9965.EPI-13-0733
  96. Fairweather-Tait S. Iron requirements and prevalence of iron deficiency. Adolescents - an overview. In: Iron Nutrition in Health and Disease. John Libbey & Co; London, UK; 1996. p. 137–48.
  97. Beard JL. Iron requirements in adolescent females. J Nutr. 2000;130(2S, Suppl):440S–2S.