Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 145 No. 3940 (2015)

Nature plus Nurture*: the triggering of multiple sclerosis

  • Hartmut Wekerle
DOI
https://doi.org/10.4414/smw.2015.14189
Cite this as:
Swiss Med Wkly. 2015;145:w14189
Published
20.09.2015

Summary

Recent clinical and experimental studies indicate that multiple sclerosis develops as consequence of a failed interplay between genetic (“nature”) and environmental (“nurture”) factors. A large number of risk genes favour an autoimmune response against the body’s own brain matter. New experimental data indicate that the actual trigger of this attack is however provided by an interaction of brain-specific immune cells with components of the regular commensal gut flora, the intestinal microbiota. This concept opens the way for new therapeutic approaches involving modulation of the microbiota by dietary or antibiotic regimens.

References

  1. Lassmann H, Wekerle H. The pathology of multiple sclerosis. In: Compston A, Confavreux C, Lassmann H, McDonald I, Miller D, Noseworthy J, et al., editors. McAlpine's Multiple Sclerosis. 4 ed. Churchill Livingstone Elsevier. 2006;p.557–600.
  2. Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, et al. Glatiramer acetate in the treatment of multiple sclerosis emerging concepts regarding its mechanism of action. CNS Drugs. 2011;25(5):401–14.
  3. Fritzsching B, Haas J, König F, Kunz P, Fritzsching E, Poschl J, et al. Intracerebral human regulatory T cells: Analysis of CD4+CD25+FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. Plos One. 2011;6(3).
  4. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–44.
  5. Dornmair K, Meinl E, Hohlfeld R. Novel approaches for identifying target antigens of autoreactive human B and T cells. Semin Immunopathol. 2009;31(4):467–77.
  6. Oksenberg JR, Panzara MA, Begovich AB, Mitchell D, Erlich HA, Murray RS, et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature. 1993;362:68–70.
  7. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.
  8. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.
  9. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367:115–23.
  10. Reindl M, Di Pauli F, Berger T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat Rev Neurol. 2013;9(8):455–61.
  11. Krishnamoorthy G, Wekerle H. EAE: An immunologist's magic eye. Eur J Immunol. 2009;39(8):2031–5.
  12. Wekerle H, Lassmann H. The immunology of inflammatory demyelinating disease. In: Compston A, Confavreux C, Lassmann H, McDonald I, Miller D, Noseworthy J, et al., editors. McAlpine’s Multiple Sclerosis. 4 ed. Chhurchill Livingstone Elsevier; 2006;p.491–546.
  13. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.
  14. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genet. 2013;45(11):1353–60.
  15. Olsson T, Jagodic M, Piehl F, Wallström E. Genetics of autoimmune neuroinflammation. Curr Opin Immunol. 2006;18(6):643–9.
  16. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, et al. Progress and prospects in rat genetics: a community view. Nature Genet. 2008;40(5):516–22.
  17. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: The role of infection. Ann Neurol. 2007;61(4):288–99.
  18. Walter J, Ley RE. The human gut microbiome: Ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.
  19. Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40(6):824–52.
  20. Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol. 2015.
  21. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50.
  22. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72:551–60.
  23. Pöllinger B, Krishnamoorthy G, Berer K, Lassmann H, Bösl M, Dunn R, et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. 2009;206(6):1303–16.
  24. Berer K, Mues M, Koutroulos M, Al Rasbi Z, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41.
  25. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nature Rev Immunol. 2010;10(10):735–44.
  26. Wu H-J, Ivanov II, Darce D, Hattori K, Shima T, Umesaki Y, et al. Gut residing filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–23.
  27. Wang Y, Telesford KM, Ochoa-Repáraz J, Haque-Begum S, Christy M, Kasper EJ, et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nature Commun. 2014.
  28. Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nature Med. 2015;21(2):121–31.
  29. Kieseier BC, Stüve O. A critical appraisal of treatment decisions in multiple sclerosis – old versus new. Nat Rev Neurol. 2011;7(5):255–62.
  30. Stecher B, Maier L, Hardt WD. “Blooming” in the gut: how dysbiosis might contribute to pathogen evolution. Nature Rev Microbiol. 2013;11(4):277–84.
  31. Yong VW, Giuliani F, Xue M, Bar-Or A, Metz LM. Experimental models of neuroprotection relevant to multiple sclerosis. Neurol. 2007;68:S32–S37.
  32. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nature Rev Microbiol. 2012;10(9):607–17.
  33. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nature Rev Immunol. 2013;13(11):790–801.
  34. Bron PA, Van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Rev Microbiol. 2012;10(1):66–78.
  35. Vrieze A, de Groot PF, Kootte RS, Knaapen M, Van Nood E, Nieuwdorp M. Fecal transplant: A safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Practice & Research in Clinical Gastroenterology. 2013;27(1):127–37.
  36. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “Western-lifestyle” inflammatory diseases. Immunity. 2014;40(6):833–42.
  37. Schwarz S, Leweling H, Meinck HM. Alternative and complementary therapies in multiple sclerosis. Fortschritte der Neurologie Psychiatrie. 2005;73(8):451–62.
  38. Yamamura T, Miyake S. Diet, gut flora, and multiple sclerosis: Current research and future perspectives. In: Yamamura T, Gran B, editors. Multiple Sclerosis Immunology.NewYork, Heidelberg, Dordrecht, London: Springer. 2014;p. 115–25.
  39. Issazadeh-Navikas S, Teimer R, Bockermann R. Influence of dietary components on regulatory T cells. Mol Med. 2012;18(1):95–110.
  40. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22.
  41. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496:513–7.