Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 145 No. 0708 (2015)

Nanosensors for cancer detection

  • François Huber
  • Hans Peter Lang
  • Jiayun Zhang
  • Donata Rimoldi
  • Christoph Gerber
DOI
https://doi.org/10.4414/smw.2015.14092
Cite this as:
Swiss Med Wkly. 2015;145:w14092
Published
08.02.2015

Summary

Cancer is a major burden in today’s society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.

References

  1. Binnig G, Quate CF, Gerber C. Atomic Force Microscope. Phys Rev Lett. 1986;56(9):930–3.
  2. Kodera N, Yamamoto D, Ishikawa R, Ando T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature. 2010;468(7320):72–7.
  3. Thundat T, Warmack FLJ, Chen GY, Allison DP. Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett. 1994;64(21):2894–6.
  4. Thundat T, Chen GY, Wannack RJ, Allison DP, Wachter EA. Vapor detection using resonating microcantilevers. Anal Chem. 1995;67(3):519–21.
  5. Marx KA. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules. 2003;4(5):1099–120.
  6. Meyer G, Amer NM. Novel optical approach to atomic force microscopy. Appl Phys Lett. 1988;53(12):1045–7.
  7. Helm M, Servant JJ, Saurenbach F, Berger R. Read-out of micromechanical cantilever sensors by phase shifting interferometry. Appl Phys Lett. 2005:87(6):064101.
  8. Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter SR. Remote infrared radiation detection using piezoresistive microcantilevers. Appl Phys Lett. 1996;69(20):2986–8.
  9. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, et al. Translating biomolecular recognition into nanomechanics. Science. 2000;288(5464):316–8.
  10. McKendry R, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA. 2002;99(15):9783–8.
  11. Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology. 2003;14(1):86–90.
  12. Backmann N, Zahnd C, Huber F, Bietsch A, Plückthun A, Lang HP, et al. A label-free immunosensor array using single-chain antibody fragments. Proc Natl Acad Sci USA. 2005;102(41):14587–92.
  13. Braun T, Backmann N, Vögtli M, Bietsch A, Engel A, Lang HP, et al. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys J. 2006;90(8):2970–7.
  14. Huber F, Hegner M, Gerber C, Güntherodt HJ, Lang HP. Label free analysis of transcription factors using microcantilever arrays. Biosens Bioelectron. 2006;21(8):1599–605.
  15. Xie K, Wei D, Huang S. Transcriptional anti-angiogenesis therapy of human pancreatic cancer. Cytokine Growth Factor Rev. 2006;17(3):147–56.
  16. Criswell T, Leskov K, Miyamoto M, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 2003;22(37):5813–27.
  17. Braun T, Ghatkesar MK, Backmann N, Grange W, Boulanger P, Letellier L, et al. Quantitative, time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat Nanotech. 2009;4(3):179–85.
  18. Huber F, Lang HP, Backmann N, Rimoldi D, Gerber C. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat Nanotech. 2013;8(2):125–9.
  19. Halait H, DeMartin K, Shah S, Soviero S, Langland R, Cheng S, et al. Analytical Performance of a Real-time PCR-based Assay for V600 Mutations in the BRAF Gene, Used as the Companion Diagnostic Test for the Novel BRAF Inhibitor Vemurafenib in Metastatic Melanoma. Diagn Mol Pathol. 2012;21(1):1–8.
  20. Rasmussen PA, Grigorov AV, Boisen A. Double sided surface stress cantilever sensor. J Micromech Microeng. 2005;15(5):1088–91.
  21. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotech. 2006;1(3):214–20.
  22. Certa U, Wilhelm-Seiler M, Foser S, Broger C, Neeb M. Expression modes of interferon-α inducible genes in sensitive and resistant human melanoma cells stimulated with regular and pegylated interferon-α. Gene. 2003;315:79–86.
  23. Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet. 2003;362(9393):1401–3.
  24. Raorane D, Lim SH, Majumdar A. Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives. Nano Lett. 2008;8(8):2229–35.
  25. Bosco FG, Hwu ET, Chen CH, Keller S, Bache M, Jakobsen MH. High throughput label-free platform for statistical bio-molecular sensing. Lab Chip. 2011;11(14): 2411–16.
  26. Kim YS, Lee CS, Jin WH, Jang S, Nam HJ, Bu JU. 100x100 thermo-piezoelectric cantilever array for SPM nano-data-storage application. Sens Mat. 2005;17(2):57–63.
  27. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol. 2001;19(9):856–60.
  28. Lang HP, Hegner M, Meyer E, Gerber C. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology. 2002;13(5):R29–R36.
  29. Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet. 1999;353(9168):1930–3.
  30. Loizeau F, Lang HP, Akiyama T, Gautsch S, Vettiger P, Tonin A, et al. Piezoresistive membrane-type surface stress sensor arranged in arrays for cancer diagnosis through breath analysis. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); 2013 Jan 20–24; Taipei, TWN. Amsterdam: Elsevier B.V. 2013. p. 621–4.
  31. Manz A, Graber N, Widmer HM: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem. 1990;1(1–6):244–8.