Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 142 No. 1516 (2012)

A population-based study on the patterns of use of different chemotherapy regimens in patients with early breast cancer

  • Markus Joerger
  • Silvia Ess
  • Silvia Dehler
  • Anita Savidan
  • Christine Bouchardy
  • Harald Frick
  • Isabelle Konzelmann
  • Beat Thürlimann
DOI
https://doi.org/10.4414/smw.2012.13571
Cite this as:
Swiss Med Wkly. 2012;142:w13571
Published
08.04.2012

Summary

BACKGROUND: There is considerable heterogeneity in the use of chemotherapy in early breast cancer (BC), despite international recommendations issued from the NCCN, NIH and the St.Gallen bi-annual conference.

METHODS: We included 1,535 patients from seven Swiss cancer registries between 2003 and 2005 receiving chemotherapy for stage I to III BC. Chemotherapy was categorised into (a) FAC/FEC, anthracyclines followed by CMF or anthracycline-taxane combinations (FAC-T) (781 patients) and (b) other chemotherapy regimens such as CMF/AC (EC) (754 patients). Predictors for choosing FAC-T over non-FAC-T chemotherapy were separately determined in all patients and in ER-negative patients (n = 496) by multivariate logistic regression analysis.

RESULTS: The use of FAC-T increased significantly over time, from 44% in 2003 to 55% in 2005. BC stage III (versus stage I-II) and nodal positivity were the predominant predictors for using FAC-T chemotherapy in the adjusted model (odds ratio (OR) 4.1, 95%-confidence intervals (CI) 2.6–6.3 and OR 3.0, 95%-CI 2.0–4.4, respectively). In high-risk ER-negative BC patients, poor histological differentiation was more important to choose FAC-T chemotherapy (OR 3.8, 95%-CI 1.9–7.5) than tumour stage or nodal status. The use of FAC-T chemotherapy varied substantially among the seven geographic regions, from 20% in rural Grisons-Glarus to 73% in Zurich.

CONCLUSIONS: Tumour biology is a predominant factor for choosing FAC-T over older chemotherapy regimens in patients with ER-negative early BC, but improvements should be made to reduce the substantial regional heterogeneity. Further epidemiological studies should assess how the use of FAC-T chemotherapy is affecting clinical outcome in patients with early BC and different risk profiles.

References

  1. Kataja V, Castiglione M. Primary breast cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 2009;20(Suppl 4):10–4.
  2. Bonadonna G, Valagussa P, Moliterni A, et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N Engl J Med. 1995;332:901–6.
  3. Bonneterre J, Roche H, Kerbrat P, et al. Epirubicin increases long-term survival in adjuvant chemotherapy of patients with poor-prognosis, node-positive, early breast cancer: 10-year follow-up results of the French Adjuvant Study Group 05 randomized trial. J Clin Oncol. 2005;23:2686–93.
  4. Fisher B, Brown AM, Dimitrov NV, et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol. 1990;8:1483–96.
  5. Hutchins LF, Green SJ, Ravdin PM, et al. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol. 2005;23:8313–21.
  6. Levine MN, Bramwell V, Pritchard K, et al. A pilot study of intensive cyclophosphamide, epirubicin and fluorouracil in patients with axillary node positive or locally advanced breast cancer. Eur J Cancer. 1992;29A:37–43.
  7. Levine MN, Bramwell VH, Pritchard KI, et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1998;16:2651–8.
  8. Levine MN, Pritchard KI, Bramwell VH, et al. Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. J Clin Oncol. 2005;23:5166–70.
  9. Martin M, Villar A, Sole-Calvo A. Doxorubicin in combination with fluorouracil and cyclophosphamide (i.v. FAC regimen, day 1, 21) versus methotrexate in combination with fluorouracil and cyclophosphamide (i.v. CMF regimen, day 1, 21) as adjuvant chemotherapy for operable breast cancer: a study by the GEICAM group. Ann Oncol. 2003;14:833–42.
  10. Goldstein LJ, O’Neill A, Sparano JA, et al. Concurrent doxorubicin plus docetaxel is not more effective than concurrent doxorubicin plus cyclophosphamide in operable breast cancer with 0 to 3 positive axillary nodes: North American Breast Cancer Intergroup Trial E 2197. J Clin Oncol. 2008;26:4092–9.
  11. Henderson IC, Berry DA, Demetri GD, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–83.
  12. Mamounas EP, Bryant J, Lembersky B, et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol. 2005;23:3686–96.
  13. Martin M, Pienkowski T, Mackey J, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352:2302–13.
  14. Roche H, Fumoleau P, Spielmann M, et al. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol. 2006;24:5664–71.
  15. Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71.
  16. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.
  17. Bria E, Nistico C, Cuppone F, et al. Benefit of taxanes as adjuvant chemotherapy for early breast cancer: pooled analysis of 15,500 patients. Cancer. 2006;106:2337–44.
  18. De Laurentiis M, Cancello G, D’Agostino D, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008;26:44–53.
  19. Ferguson T, Wilcken N, Vagg R, et al. Taxanes for adjuvant treatment of early breast cancer. Cochrane Database Syst Rev 2007; CD004421.
  20. Francis P, Crown J, Di Leo A, et al. Adjuvant chemotherapy with sequential or concurrent anthracycline and docetaxel: Breast International Group 02-98 randomized trial. J Natl Cancer Inst. 2008;100:121–33.
  21. Peto R. The worldwide overview: New results for systemic adjuvant therapies. In San Antonio Breast Cancer Symposium 2007. San Antonio: 2007.
  22. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47.
  23. National Comprehensive Cancer Network Practice Guidelines in Oncology – v.1.2010. In Jan-31-2010 Edition.
  24. Carlson RW, Edge SB, Theriault RL. NCCN: Breast cancer. Cancer Control. 2001;8:54–61.
  25. Eifel P, Axelson JA, Costa J, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst. 2001;93:979–89.
  26. Curado MP, Edwards BK, Shin HR, et al. Cancer incidence in five continents, Vol. IX IARC Scientific Publications. Lyon: IARC 2007; No. 160.
  27. Ess S, Joerger M, Frick H, et al. Predictors of state-of-the-art management of early breast cancer in Switzerland. Ann Oncol. 2010.
  28. Ess S, Savidan A, Frick H, et al. Geographic variation in breast cancer care in Switzerland. Cancer Epidemiol. 2010;34:116–21.
  29. Tomatis M, Dalmasso M, Del Mastro G, Tomatis A. QT Audit system on breast cancer treatment. CPO Piemonte: European breast cancer network- “Europe Against Cancer” Programme EUSOMA 2006. 2006.
  30. McDavid K, Schymura MJ, Armstrong L, et al. Rationale and design of the National Program of Cancer Registries’ Breast, Colon, and Prostate Cancer Patterns of Care Study. Cancer Causes Control. 2004;15:1057–66.
  31. Green FLC, C.C.; Fritz, A.G. AJCC Cancer Staging Atlas. New York (U.S.): John Wiley 2006.
  32. Schweiz BfS. Gemeindetypologie. http://www.bfs.admin.ch/bfs/portal/de/index/regionen/11/geo/raeumliche_typologien/01.html 2000.
  33. Poole CJ, Earl HM, Hiller L, et al. Epirubicin and cyclophosphamide, methotrexate, and fluorouracil as adjuvant therapy for early breast cancer. N Engl J Med. 2006;355:1851–62.
  34. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9.
  35. Bonneterre J, Roche H, Kerbrat P, et al. Long-term cardiac follow-up in relapse-free patients after six courses of fluorouracil, epirubicin, and cyclophosphamide, with either 50 or 100 mg of epirubicin, as adjuvant therapy for node-positive breast cancer: French adjuvant study group. J Clin Oncol. 2004;22:3070–9.
  36. Berry DA, Cirrincione C, Henderson IC, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 2006;295:1658–67.
  37. Budman DR, Berry DA, Cirrincione CT, et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer Inst. 1998;90:1205–11.
  38. Coombes RC, Bliss JM, Wils J, et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: results of a randomized trial. The International Collaborative Cancer Group. J Clin Oncol. 1996;14:35–45.
  39. Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol. 2001;19:3817–27.
  40. Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol. 2005;16:1569–83.
  41. Goldhirsch A, Ingle JN, Gelber RD, et al. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol. 2009;20:1319–29.
  42. Goldhirsch A, Wood WC, Gelber RD, et al. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol. 2003;21:335765.
  43. Goldhirsch A, Wood WC, Gelber RD, et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.
  44. Fang L, Barekati Z, Zhang B, et al. Targeted therapy in breast cancer: what’s new? Swiss Med Wkly. 2011;141:w13231.
  45. Schrijvers CT, Mackenbach JP, Lutz JM, et al. Deprivation and survival from breast cancer. Br J Cancer. 1995;72:738–43.
  46. Thomson CS, Hole DJ, Twelves CJ, et al. Prognostic factors in women with breast cancer: distribution by socioeconomic status and effect on differences in survival. J Epidemiol Community Health. 2001;55:308–15.
  47. Fisch T, Pury P, Probst N, et al. Variation in survival after diagnosis of breast cancer in Switzerland. Ann Oncol. 2005;16:1882–8.
  48. Regan MM, Pagani O, Walley B, et al. Premenopausal endocrine-responsive early breast cancer: who receives chemotherapy? Ann Oncol. 2008;19:1231–41.
  49. Griggs JJ, Culakova E, Sorbero ME, et al. Social and racial differences in selection of breast cancer adjuvant chemotherapy regimens. J Clin Oncol. 2007;25:2522–7.
  50. Altman DG, Bland JM. Missing data. BMJ. 2007;334:424.

Most read articles by the same author(s)

1 2 > >>