Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 142 No. 0304 (2012)

Creutzfeldt-Jakob disease and mad cows: lessons learnt from yeast cells

  • Julia Hofmann
  • Hanna Wolf
  • Andrea Grassmann
  • Verena Arndt
  • James Graham
  • Ina Vorberg
DOI
https://doi.org/10.4414/smw.2012.13505
Cite this as:
Swiss Med Wkly. 2012;142:w13505
Published
15.01.2012

Summary

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that affect mammals including humans. The proteinaceous nature of the infectious agent, the prion, and its propagation, challenge established dogmas in biology. It is now widely accepted that prion diseases are caused by unconventional agents principally composed of a misfolded host-encoded protein, PrP. Surprisingly, major break-throughs in prion research came from studies on functionally unrelated proteins in yeast and filamentous fungi. Aggregates composed of these proteins act as epigenetic elements of inheritance that can propagate their alternative states by a conformational switch into an ordered ß-sheet rich polymer just like mammalian prions. Since their discovery prions of lower eukaryotes have provided invaluable insights into all aspects of prion biogenesis. Importantly, yeast prions provide proof-of-principle that distinct protein conformers can be infectious and can serve as genetic elements that have the capacity to encipher strain specific information. As a powerful and tractable model system, yeast prions will continue to increase our understanding of prion-host cell interaction and potential mechanisms of protein-based epigenetic inheritance.

References

  1. Aguzzi A. Prion diseases of humans and farm animals: Epidemiology, genetics, and pathogenesis. J Neurochem. 2006;97(6):1726–39.
  2. McGowan J. Scrapie in sheep. Scott J Agric. 1922;5:365–75.
  3. Sigurdson CJ, Miller MW. Other animal prion diseases. Br Med Bull. 2003;66:199–212.
  4. Wadsworth JD, Collinge J. Molecular pathology of human prion disease. Acta Neuropathol. 2011;121(1):69–77.
  5. Mead S. Prion disease genetics. Eur J Hum Genet. 2006;14(3):273–81.
  6. Norrby E. Prions and protein-folding diseases. J Intern Med. 2011;270(1):1–14.
  7. Alpers MP. Review. The epidemiology of kuru: Monitoring the epidemic from its peak to its end. Philos Trans R Soc Lond B Biol Sci. 2008;363(1510):3707–13.
  8. Collinge J. Variant creutzfeldt-jakob disease. Lancet. 1999;354(9175):317–23.
  9. Anderson RM, Donnelly CA, Ferguson NM, Woolhouse ME, Watt CJ, Udy HJ, et al. Transmission dynamics and epidemiology of bse in british cattle. Nature. 1996;382(6594):779–88.
  10. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, et al. The same prion strain causes vcjd and bse. Nature. 1997;389(6650):448–50, 526.
  11. Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW. Preclinical vcjd after blood transfusion in a prnp codon 129 heterozygous patient. Lancet. 2004;364(9433):527–9.
  12. Griffith JS. Self-replication and scrapie. Nature. 1967;215(5105):1043–4.
  13. Bolton DC, McKinley MP, Prusiner SB. Identification of a protein that purifies with the scrapie prion. Science. 1982;218(4579):1309–11.
  14. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–44.
  15. Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 2010;33(7):317–25.
  16. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, et al. The most infectious prion protein particles. Nature. 2005;437(7056):257–61.
  17. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987;51(2):229–40.
  18. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol. Review. 2088;88:673–728.
  19. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, et al. Mice devoid of prp are resistant to scrapie. Cell. 1993;73(7):1339–47.
  20. Wong BS, Liu T, Li R, Pan T, Petersen RB, Smith MA, et al. Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem. 2001;76(2):565–72.
  21. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008;88(2):673–728.
  22. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, et al. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci. 2010;13(3):310–8.
  23. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 1993;32(8):1991–2002.
  24. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB. Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc Natl Acad Sci U S A. 1993;90(1):1–5.
  25. Borchelt DR, Taraboulos A, Prusiner SB. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem. 1992;267(23):16188–99.
  26. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB. Cholesterol depletion and modification of cooh-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol. 1995;129(1):121–32.
  27. Marijanovic Z, Caputo A, Campana V, Zurzolo C. Identification of an intracellular site of prion conversion. PLoS Pathog. 2009;5(5):e1000426
  28. Horiuchi M, Priola SA, Chabry J, Caughey B. Interactions between heterologous forms of prion protein: Binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A. 2000;97(11):5836–41.
  29. Wadsworth JD, Asante EA, Desbruslais M, Linehan JM, Joiner S, Gowland I, et al. Human prion protein with valine 129 prevents expression of variant cjd phenotype. Science. 2004;306(5702):1793–6.
  30. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science. 1996;274(5295):2079–82.
  31. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, et al. Eight prion strains have prp(sc) molecules with different conformations. Nat Med. 1998;4(10):1157–65.
  32. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995;375(6533):698–700.
  33. Manuelidis L, Yu ZX, Barquero N, Mullins B. Cells infected with scrapie and creutzfeldt-jakob disease agents produce intracellular 25-nm virus-like particles. Proc Natl Acad Sci U S A. 2007;104(6):1965–70.
  34. Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411(6839):810–3.
  35. Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell. 2005;121(2):195–206.
  36. Soto C, Saborio GP, Anderes L. Cyclic amplification of protein misfolding: Application to prion-related disorders and beyond. Trends Neurosci. 2002;25(8):390–4.
  37. Deleault NR, Geoghegan JC, Nishina K, Kascsak R, Williamson RA, Supattapone S. Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem. 2005;280(29):26873–9.
  38. Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, et al. Sulfated glycans and elevated temperature stimulate prp(sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J. 2001;20(3):377–86.
  39. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, et al. Synthetic mammalian prions. Science. 2004;305(5684):673–6.
  40. Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H, et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 2010;119(2):177–87.
  41. Wang F, Wang X, Yuan CG, Ma J. Generating a prion with bacterially expressed recombinant prion protein. Science. 2010;327(5969):1132–5.
  42. Baskakov IV. The reconstitution of mammalian prion infectivity de novo. FEBS J. 2007;274(3):576–87.
  43. Wickner RB. [ure3] as an altered ure2 protein: Evidence for a prion analog in saccharomyces cerevisiae. Science. 1994;264(5158):566–9.
  44. Aigle M, Lacroute F. Genetical aspects of [ure3], a non-mitochondrial, cytoplasmically inherited mutation in yeast. Mol Gen Genet. 1975;136(4):327–35.
  45. Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996;273(5275):622–6.
  46. Halfmann R, Lindquist S. Epigenetics in the extreme: Prions and the inheritance of environmentally acquired traits. Science. 2010;330(6004):629–32.
  47. Wickner RB, Edskes HK, Bateman D, Kelly AC, Gorkovskiy A. The yeast prions [psi+] and [ure3] are molecular degenerative diseases. Prion. 2011;5(4):
  48. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T, Engel A, McCann L, et al. Yeast prions: Evolution of the prion concept. Prion. 2007;1(2):94–100.
  49. Uptain SM, Lindquist S. Prions as protein-based genetic elements. Annu Rev Microbiol. 2002;56:703–41.
  50. Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A. 1997;94(18):9773–8.
  51. Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc Natl Acad Sci U S A. 2005;102(36):12825–30.
  52. Schlumpberger M, Prusiner SB, Herskowitz I. Induction of distinct [ure3] yeast prion strains. Mol Cell Biol. 2001;21(20):7035–46.
  53. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature. 2004;428(6980):323–8.
  54. Sparrer HE, Santoso A, Szoka FC, Jr., Weissman JS. Evidence for the prion hypothesis: Induction of the yeast [psi+] factor by in vitro- converted sup35 protein. Science. 2000;289(5479):595–9.
  55. Brachmann A, Baxa U, Wickner RB. Prion generation in vitro: Amyloid of ure2p is infectious. EMBO J. 2005;24(17):3082–92.
  56. Chien P, Weissman JS, DePace AH. Emerging principles of conformation-based prion inheritance. Annu Rev Biochem. 2004;73:617–56.
  57. King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature. 2004;428(6980):319–23.
  58. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [psi+] prion in saccharomyces cerevisiae. Genetics. 1997;147(2):507–19.
  59. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for huntington's disease pathology. Proc Natl Acad Sci U S A. 1999;96(8):4604–9.
  60. Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of q/n-rich, polyq, and non-polyq amyloids on the de novo formation of the [psi+] prion in yeast and aggregation of sup35 in vitro. Proc Natl Acad Sci U S A. 2004;101(35):12934–9.
  61. Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: The story of [pin(+)]. Cell. 2001;106(2):171–82.
  62. Sweeny EA, Shorter J. Prion proteostasis: Hsp104 meets its supporting cast. Prion. 2008;2(4):135–40.
  63. Shorter J, Lindquist S. Hsp104, hsp70 and hsp40 interplay regulates formation, growth and elimination of sup35 prions. EMBO J. 2008;27(20):2712–24.
  64. Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YQ. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol. 2001;14:4656–69.
  65. Allen KD, Chernova TA, Tennant EP, Wilkinson KD, Chernoff YO. Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J Biol Chem. 2007;282(5):3004–13.
  66. Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol. 2008;6(11):e294
  67. Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, et al. Prion induction by the short-lived, stress-induced protein lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell. 2011;43(2):242–52.
  68. Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegrzyn RD, Sherman MY, et al. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol. 2006;26(2):617–29.
  69. Redeker V, Hughes C, Savistchenko J, Vissers JP, Melki R. Qualitative and quantitative multiplexed proteomic analysis of complex yeast protein fractions that modulate the assembly of the yeast prion sup35p. PLoS One. 2011;6(9):e23659.
  70. Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid – from bacteria to humans. Trends Biochem Sci. 2007;32(5):217–24.
  71. Badtke MP, Hammer ND, Chapman MR. Functional amyloids signal their arrival. Sci Signal. 2009;2(80):pe43.
  72. Iconomidou VA, Chryssikos GD, Gionis V, Galanis AS, Cordopatis P, Hoenger A, et al. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the a-family. J Struct Biol. 2006;156(3):480–8.
  73. Kenney JM, Knight D, Wise MJ, Vollrath F. Amyloidogenic nature of spider silk. Eur J Biochem. 2002;269(16):4159–63.
  74. Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia cpeb can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 2010;140(3):421–35.
  75. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006;4(1):e6.
  76. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325(5938):328–32.
  77. Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ. Amyloid aggregates of the het-s prion protein are infectious. Proc Natl Acad Sci U S A. 2002;99(11):7402–7.
  78. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137(1):146–58.
  79. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. Mavs forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146(3):448–61.
  80. Aguzzi A. Cell biology: Beyond the prion principle. Nature. 2009;459(7249):924–5.
  81. Krammer C, Kryndushkin D, Suhre MH, Kremmer E, Hofmann A, Pfeifer A, et al. The yeast sup35nm domain propagates as a prion in mammalian cells. Proc Natl Acad Sci U S A. 2009;106(2):462–7.
  82. Aguzzi A, Rajendran L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron. 2009;64(6):783–90.