Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 140 No. 4546 (2010)

Kras in metastatic colorectal cancer

  • A Wicki
  • R Herrmann
  • G Christofori
DOI
https://doi.org/10.4414/smw.2010.13112
Cite this as:
Swiss Med Wkly. 2010;140:w13112
Published
08.11.2010

Summary

Kras, a small intracellular GTPase, is a central intermediary of the epidermal growth factor receptor (EGFR) and other tyrosine kinase receptor pathways. Increased EGFR and Kras signalling is involved in colorectal carcinogenesis and tumour progression. Mutations of Kras result in the loss of its GTPase activity and thus in a constitutive activation of Kras signalling. Kras mutations are found in 30–60% of colorectal cancers. The concordance between Kras mutations in the primary tumour and related metastatic sites is high. Since mutation of Kras confers resistance to anti-EGFR-antibody therapy, it is critical to assess Kras mutational status in colorectal cancer patients. Anti-EGFR-antibody therapy improves survival in patients with metastatic colorectal cancer and wild-type Kras.

References

  1. U.S. National Cancer Institute. SEER database, 2002–2006.
  2. Morson B. President’s address: The polyp-cancer sequence in the large bowel. Proc R Soc Med. 1974;67:451–7.
  3. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32.
  4. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–12.
  5. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8(5):378–98.
  6. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, et al. Mutant p53 drives invasion by promoting integrin recycling. Cell. 2009;139(7):1327–41.
  7. Leslie A, Carey FA, Pratt NR, Steele RJC. The colorectal adenoma-carcinoma sequence. Br J Surg. 2002;89(7)845–60.
  8. Uronis JM, Herfarth HH, Rubinas TC, Bissahoyo AC, Hanlon K, Threadgill DW. Flat colorectal cancers are genetically determined and progress to invasion without going through a polypoid stage. Cancer Res. 2007;67(24):11594–600.
  9. Smith D, Ballal M, Hodder R, Selvachandran SN, Cade D. The adenoma carcinoma sequence: an indoctrinated model for tumorigenesis, but is it always clinical reality? Colorectal disease. 2006;8:296–301.
  10. Berns A. Cancer. Improved mouse models. Nature. 2001;410(6832):1043–4.
  11. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91(2):355–8.
  12. Gibbs JB, Sigal IS, Poe M, Scolnick EM. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA. 1984;81(18):5704–8.
  13. Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379–89.
  14. Allegra CJ, Jessup M, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American society of clinical oncology provisional clinical opinion: testing for Kras gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.
  15. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, et al. Kras codon 61, 146 and Braf mutations predict resistance to cetuximab plus irinotecan in Kras codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer. 2009;101(4):715–21.
  16. Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, et al. Distinct patterns of Kras mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genetics. 2004;13(19):2303–11.
  17. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, et al. Pharmacogenomics J. 2010;AOP:doi:10.1038/tpj.2010.9
  18. Cogoi S, Paramasivam M, Membrino A, Yokoyama K, Xodo L. The Kras promoter responds to myc-associated zinc finger and poly-ADP-ribose polymerase 1 proteins which recognize a critical quadruplex-forming GA-element. J Biol Chem. 2010:AOP:doi/10.1074/jbc.M110.101923
  19. Brink M, de Goeij AFPM, Weijenberg MP, Roemen GMJM, Lentjes MHFM, Pachen MMM. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis. 2003;24(4):703–10.
  20. Cejas P, López-Gómez M, Aguayo C, Madero R, de Castro Carpeño J, Belda-Iniesta C, et al. KRAS Mutations in Primary Colorectal Cancer Tumors and Related Metastases: A Potential Role in Prediction of Lung Metastasis. PLoS ONE. 2009;4(12):e8199.doi:10.1371/journal.pone.0008199
  21. Molinari F, Martin V, Saletti P, De Dosso S, Spitale A, Camponovo A, et al. Differing deregulation of EGFR and downstream proteins in primary colorectal cancer and related metastatic sites may bei clinically relevant. Br J Cancer. 2009;100:1087–94.
  22. Artale S, Sartore-Bianchi A, Veronese SM, Gambi V, Sartnataro CS, Siena S. Mutations of Kras and Braf in primary and matched metastatic sites of colorectal cancer. J Clin Oncol. 2008;26(25):4217–9.
  23. Santini D, Loupakis F, Vincenzi B, Foriani I, Stasi I, Canestrari E, et al. High concordance of Kras status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist. 2008;13(12):1270–5.
  24. Zauber P, Sabbath-Solitare M, Marotta SP, Bishop DT. Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol. 2003;56(3):137–40.
  25. Etienne-Grimaldi MC, Formento JL, Francoual M, Francois E, Formento P, Renée N, et al. Kras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res. 2008;14(15):4830–5.
  26. Suchy B, Zietz C, Rabes HM. Kras point mutations in human colorectal carcinomas: relation to aneuploidy and metastasis. Int J Cancer. 1992;52(1):30–3.
  27. Oliveira C, Velho S, Moutinho C, Ferreira A, Preto A, Domingo E, et al. Kras and Braf oncogenic mutations in MSS colorectal cancer progression. Oncogene. 2007;26(1):158–63.
  28. Bouchahada M, Karaoué A, Saffroy R, Innominato P, Gorden L, Guettier C, et al. Acquired Kras mutations during progression of colorectal cancer metastases: possible implications for therapy and prognosis. Cancer Chemother Pharmacol. 2010;DOI10.1007/s00280-010-1298-9
  29. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.
  30. Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, Zeng ZS, et al. Kras mutation correlates with accelerated metastatic progression in patients with colorectal liver metastasis. Ann Surg Oncol. 2009;doi:10.1245/s10434-009-0605-3
  31. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, et al. Endogenous oncogenic Kras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375–87.
  32. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, et al. Tumor induction by an endogenous Kras oncogene is highly dependent on cellular context. Cancer Cell. 2003;4(2):111–20.
  33. Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, et al. Nat Genetics. 2008;40(5):600–8.
  34. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004;6(5):447–58.
  35. Horsch M, Recktenwald CV, Schädler S, Hrabé de Angelis M, Seliger B, Beckers J. Overexpressed vs mutated Kras in murine fibroblasts: a molecular phenotyping study. Br J Cancer. 2009;100(4):656–62.
  36. Tsunoda T, Takashima Y, Fujimoto T, Koyanagi M, Yoshida Y, Doi K, et al. Three-dimensionally specific inhibition of DNA repair-related genes by activated Kras in colon crypt model. Neoplasia. 2010;12(5):397–404.
  37. Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J, et al. Kras genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics. J Mol Diagn. 2010;12(1):35–42.
  38. Troncone G, Malapelle U, Cozzolino I, Palombini L. Kras mutation analysis on cytological specimens of metastatic colorectal cancer. Diag Cytopathol. 2010;0:doi:10.1002/dc
  39. Yen LC, Yeh YS, Chen CW, Wang HM, Tsai HL, Lu CY, et al. Detection of Kras oncogene in peripheral blood as predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res. 2009;15(13):4508–13.
  40. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.
  41. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135:489–98.
  42. Prewett M, Rockwell P, Rockwell RF, Giorgio NA, Mendelsohn J, Scher HI, et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol. 1996;19(6):419–27.
  43. Peeters M, Balfour J, Arnold D. Panitumumab – a fully human anti-EGFR monoclonal antibody for treatment of metastatic colorectal cancer. Aliment Pharmacol Therapeutics. 2008;28:269–81.
  44. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. Kras mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.
  45. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Dongsheng T, Tebbutt NC, et al. Kras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.
  46. Van Cutsem E, Rougier P, Köhne C. A meta-analysis of the CRYSTAL and OPUS studies combining cetuximab with chemotherapy (CT) as 1st-line treatment for patients (pts) with metastatic colorectal cancer (mCRC): Results according to Kras and Braf mutation status. Eur J Cancer. 2009;7(S345):abstr6077.
  47. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.
  48. Tabernero J, Van Cutsem E, Diaz-Rubio E, Cervantes A, Humblet Y, André T, et al. Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2007;25(33):5225–32.
  49. Siena S, Cassidy J, Tabernero J, Burkes ME, Barugel Y, Humblet D, et al. Randomized phase III study of panitumumab (pmab) with FOLFOX4 compared to FOLFOX4 alone as first-line treatment (tx) for metastatic colorectal cancer (mCRC): PRIME trial. ASCO GI Cancers Symposium 2010; Abstract 283.
  50. Maughan TS, Adams R, Smith CG, Seymour T, Wilson RH, Meade AM, et al. Oxaliplatin and fluoropyrimidine chemotherapy plus or minus cetuximab: The effect of infusional 5-FU or capecitabine on the outcomes of the MRC COIN trial in advanced colorectal cancer. ASCO GI Cancers Symposium, 2010; Abstract 402.
  51. Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic role of Kras and Braf in Stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 Trial. J Clin Oncol. 2010;28(3):466–74.
  52. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, et al. Kras and Braf mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7.
  53. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(29):934.
  54. Monticone M, Biollo E, Maffei M, Donadini A, Romeo F, Storlazzi CT, et al. Gene expression deregulation by Kras G12D and G12V in a Braf V600E context. Molecular Cancer. 2008;7(92):doi:10.1186/1476-4598-7-92
  55. Santini D, Spoto C, Loupakis F, Vincenzi B, Silvestris N, Cremolini C, et al. High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol. 2010;21(7):1565.
  56. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type Braf is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.
  57. Bokemeyer C, Kohne C, Rougier P, Stroh C, Schlichting M, Van Cutsem V. Cetuximab with chemotherapy (CT) as 1st-line treatment for metastatic colorectal cancer (mCRC): Analysis of the CRYSTAL and OPUS studies according to Kras and Braf mutation status. J Clin Oncol. 2010;28:7s(suppl; abstr 3506).
  58. Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet JP, Lecomte T, et al. Analysis of PTEN, Braf, and EGFR status in determining benefit from cetuximab therapy in wild-type Kras metastatic colon cancer. J Clin Oncol. 2009;27(35):5924–30.
  59. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–7.
  60. Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, et al. PTEN expression and Kras mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol. 2009;27(16):2622–9.
  61. Prenen H, De Schutter J, Jacobs B, De Roock W, Biesmans B, Claes B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15(9):3184–8.
  62. Chung CH, Seeley EH, Roder H, Grigorieva J, Tsypin M, Roder J, et al. Detection of tumor epidermal growth factor receptor pathway dependence by serum mass spectrometry in cancer patients. Cancer Epidemiol Biomarkers Prev. 2010;19(2):OF1-8, doi: 10.1158/1055-9965.EPI-09-0937
  63. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead Braf and oncogenic Ras cooperate to drive tumor progression through Cras. Cell. 2010;140(2):209–21.
  64. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. Nature. 2010;AOPdoi10.1038/nature08833
  65. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. Nature. 2010;AOPdoi10.1038/nature08902