Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 140 No. 3738 (2010)

New horizons in osteoarthritis

  • F Oliviero
  • R Ramonda
  • L Punzi
DOI
https://doi.org/10.4414/smw.2010.13098
Cite this as:
Swiss Med Wkly. 2010;140:w13098
Published
13.09.2010

Summary

Osteoarthritis (OA), also known as degenerative joint disease, is the most frequent chronic musculoskeletal disease and the leading cause of disability in elderly persons. There are currently at least 27 million persons afflicted with OA in the United States, and the annual cost to society in medical care and wage loss is expected to reach nearly $100 billion dollars by 2020, with consequent increased spending on its diagnosis and treatment, side effect prevention, and loss of productivity. Despite this enormous burden, many aspects of OA are still unknown, with implications not only in terms of diagnosis and assessment but also with regard to therapy. Awareness of this state of affairs has attracted many researchers to this field, making OA one of the most actively studied sectors of rheumatology. Although some clinicians are unaware of recent advances, there is a large body of publications indicating that much has been achieved. Major progress has been made in formulating better definitions of risk factors, in particular in indicating the responsibility of biomechanical and genetic factors, and, with regard to pathogenesis, underlining the role of subchondral bone, cytokines and proteinases. Assessment of OA activity and its progression has been improved with the advent of biomarkers and new imaging procedures, in particular sonography and magnetic resonance imaging (MRI), but also of better clinical instruments, including more reliable patient questionnaires. Information from ongoing studies may improve the to some extent incomplete definition of OA phenotypes. Finally, promising new horizons have been opened up even with regard to the treatment of OA, which is still for the most part unsatisfactory except for surgical replacement therapy. Numerous new substances have been formulated and the findings of trials studying their effects are encouraging, although much has yet to be done.

References

  1. Verbrugge LM, Patrick DL. Seven chronic conditions: their impact on US adults’ activity levels and use of medical services. Am J Public. 1995;85:173–82.
  2. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;1:26–35.
  3. Elders MJ. The increasing impact of arthritis on Public Health. J Rheumatol. 2000;27:6–8.
  4. World Health Organisation and the Bone and Joint Decade 2001. Available at http://www.boneandjointdecade.org
  5. Corti MC, Guralnik JM, Sartori L, Baggio G, Manzato E, Pezzotti P, et al. The impact of cardiovascular and osteoarticular diseases on disability in older men and women: rationale, design and sample characteristics of the PRO.V.A (Progetto veneto Anziani) Study. J Am Geriatr Soc. 2002;50:1535–40.
  6. Calza S, Decarli A, Ferraroni M. Obesity and prevalence of chronic diseases in the 1999–2000 Italian National Health Survey. BMC Public Health. 2008;8:140–9.
  7. Forbes WF. General concepts of the association of ageing and disease. In “Osteoarthritis. Public Health implications for an ageing population”. Hamerman D, Ed. Johns Hopkins University Press, Baltimore and London, 1997, pp 3–14.
  8. Crepaldi G, Punzi L. Aging and osteoarthritis. Aging Clin Exp Res. 2003;15:355–8.
  9. Bagge E, Bjelle A, Edén S, Svanborg A. Clinical and radiological findings in 79 and 85 year olds. Ann Rheum Dis. 1991;50:535–9.
  10. Corti MC, Rigon C. Epidemiology of osteoarthritis: prevalence, risk factors and functional impact. Aging Clin Exp Res. 2003;15:359–63.
  11. Hamerman D. Ageing and the musculoskeletal system. Ann Rheum Dis. 1997;56:578–85.
  12. Kirkwood TBL. What is the relationship between osteoarthritis and ageing? Baillière’s Clin Rheumatol. 1997;11:683–93.
  13. Ikegawa S. New gene associations in osteoarthritis: what do they provide, and where are we going? Curr Opin Rheumatol. 2007;19:429–34.
  14. Stecher RM. Heberden’s nodes: heredity in hypertrophic arthritis of the finger joints. Am J Med Sci. 1941;210:801–9.
  15. Kellgren JH, Lawrence JS, Bier F. Genetic factors in generalised osteoarthritis. Ann Rheum Dis. 1963;22:237–55.
  16. Felson DT, Couropmitree NN, Chaisson CE, Hannan MT, Zhang Y, McAlindon TE, et al. Evidence for a Mendelian gene in a segregation analysis of generalized radiographic osteoarthritis: the Framingham study. Arthritis Rheum. 1998;41:1064–71.
  17. Hirsch R, Lethbridge-Cejku M, Hanson R, Scott WW Jr, Reichle R, Plato CC, et al. Familial aggregation of osteoarthritis: data from the Baltimore Longitudinal Study on Aging. Arthritis Rheum. 1998;41:1227–32.
  18. Spector TD, Cicuttini F, Baker J, Loughlin J, Hart D. Genetic influences on osteoarthritis in women: a twin study. BMJ. 1996;312:940–3.
  19. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci. USA 2004;101:9757–62.
  20. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet. 2005;37:138–44.
  21. Valdes AM, Loughlin J, Oene MV, Chapman K, Surdulescu GL, Doherty M, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 2007;56:137–46.
  22. Lane NE, Lian K, Nevitt MC, Zmuda JM, Lui L, Li J, et al. Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum. 2006;54:1246–54.
  23. Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ, Gonzalez A. Further evidence of the role of frizzled-related protein gene polymorphisms in osteoarthritis. Ann Rheum Dis. 2007;66:1052–5.
  24. Snelling S, Ferreira A, Loughlin J. Allelic expression analysis suggests that cisacting polymorphism of FRZB expression does not contribute to osteoarthritis susceptibility. Osteoarthritis Cartilage. 2007;15:90–2.
  25. Mustafa Z, Dowling B, Chapman K, Sinsheimer JS, Carr A, Loughlin J. Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population. Arthritis Rheum. 2005;52:3502–6.
  26. Kaliakatsos M, Tzetis M, Kanavakis E, Fytili P, Chouliaras G, Karachalios T, et al. Asporin and knee osteoarthritis in patients of Greek origin. Osteoarthritis Cartilage. 2006;14:609–11.
  27. Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ, Gonzalez A. Lack of association of a variable number of aspartic acid residues in the asporin gene with osteoarthritis susceptibility: case-control studies in Spanish Caucasians. Arthritis Res Ther. 2006; 8:R55.
  28. Valdes AM, Loughlin J, Oene MV, Chapman K, Surdulescu GL, Doherty M, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 2007;56:137–46.
  29. Li Y, Xu L, Olsen BR. Lessons from genetic forms of osteoarthritis for the pathogenesis of the disease. Osteoarthritis Cartilage. 2007;15:1101–5.
  30. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A 2007;143:1–18.
  31. Ikegawa S. Genetic analysis of skeletal dysplasia: recent advances and perspectives in the postgenome-sequence era. J Hum Genet. 2006;51:581–6.
  32. Botha-Scheepers S, Watt I, Slagboom E, de Craen AJM, Meulenbelt I, Rosendaal FR, et al. Innate production of tumour necrosis factor a and interleukin 10 is associated with radiological progression of knee osteoarthritis Ann Rheum Dis. 2008;67:1165–9.
  33. Bos SD, Suchiman HE, Kloppenburg M, Houwing-Duistermaat JJ, le Graverand MP, Seymour AB, et al. Allelic Variation at the C-Reactive Protein Gene Associates to Both Hand Osteoarthritis Severity and Serum High Sensitive CRP Levels in the GARP Study. Ann Rheum Dis. 2008;67:877–9.
  34. Valdes AM, Loughlin J, Timms KM, van Meurs JJ, Southam L, Wilson SG, et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant in risk of knee osteoarthritis. Am J Hum Gen. 2008;82:1231–40.
  35. Stern AG, de Carvalho MR, Buck GA, Adler RA, Rao TP, Disler D, et al. I-NODAL Network. Association of erosive hand osteoarthritis with a single nucleotide polymorphism on the gene encoding interleukin-1 beta. Osteoarthritis Cartilage. 2003;11:394–402.
  36. Felson DT. The epidemiology of knee osteoarthritis: results from the Framingham Osteoarthritis Study. Semin Arthritis Rheum. 1990;20:42–50.
  37. Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50:2811–9.
  38. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.
  39. Millward-Sadler SJ, Salter DM. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng. 2004;32:435–46.
  40. Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M. Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat. 2005;187:473–85.
  41. Iannone F, Lapadula G. The pathophysiology of osteoarthritis. Aging Clin Exp Res. 2003;15: 364–72.
  42. Fitzgerald JB, Jin M, Dean D, Wood DJ, Zheng MH, Grodzinsky AJ. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem. 2004;279:19502–11.
  43. Dayer J-M. The process of identifying and understanding cytokines: from basic studies to treating rheumatic diseases. Best Pract Res Clin Rheumatol. 2004;18:31–45.
  44. Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis. 2008;67(suppl III):iii75–82.
  45. Goldring MB. Anticytokine therapy for osteoarthritis. Expert Opin Biol Ther. 2001;1:817–29.
  46. Zigang GE, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T. Osteoarthritis and Therapy. Arthritis Rheum. 2006;55:493–500.
  47. Meats JE, McGuire MB, Russell RG. Human synovium releases a factor which stimulates chondrocyte production of PGE and plasminogen activator. Nature. 1980;286:891–2.
  48. Melchiorri C, Meliconi R, Frizziero L, Silvestri T, Pulsatelli L, Mazzetti I, et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum. 1998;41:2165–74.
  49. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage. Arthritis Rheum. 2001;44:585–94.
  50. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 2002;46:2087–94.
  51. Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest. 1988;82:2026–37.
  52. Reginato AM, Sanz-Rodriguez C, Diaz A, Dharmavaram RM, Jimenez SA. Transcriptional modulation of cartilage-specific collagen gene expression by interferon gamma and tumour necrosis factor in cultured human chondrocytes. Biochem J. 1993;294:761–9.
  53. Goldring MB, Suen LF, Yamin R, Lai WF. Regulation of collagen gene expression by prostaglandins and interleukin-1β in cultured chondrocytes and fibroblasts. Am J Ther. 1996;3:9–16.
  54. Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M et al. Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage 2003;11:644–52.
  55. Taskiran D, Stefanovic-Racic M, Georgescu H, Evans C: Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun. 1994;200:142–8.
  56. Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: Prostaglandins and nitric oxide. Clin Orthop. 2004;427:S37–S46.
  57. Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop. 2004;423:S27–S36.
  58. Guerne PA, Desgeorges A, Jaspar JM, Relic B, Peter R, Hoffmeyer P, Dayer JM. Effects of IL-6 and its soluble receptor on proteoglycan synthesis and NO release by human articular chondrocytes: comparison with IL-1. Modulation by dexamethasone. Matrix Biol. 1999;18:253–60.
  59. Pelletier JP, Martel-Pelletier J, Abramson SB: Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.
  60. Bertazzolo N, Punzi L, Stefani MP, Cesaro G, Pianon M, Finco B, Todesco S. Interrelationships between interleukin (IL)-1, IL-6 and IL-8 in synovial fluid of various arthropathies. Agents Actions. 1994;41:90–2.
  61. Punzi L, Calò L, Plebani M. Clinical significance of cytokine determination in synovial fluid. Crit Rev Clin Lab Sci. 2002;39:63–88.
  62. Hulejova H, Baresova V, Klezl Z, Polanska M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine. 2007;38:151–6.
  63. Martel-Pelletier J, Lajeunesse D, Pelletier J-P. Subchondral bone and osteoarthritis progression: a very significant role. In “Osteoarthritis, Inflammation and Degradation: A Continuum” J. Buckwalter, M.Lotz and J-F Lotz Eds. IOS Press 2007, pp 206-18.
  64. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.
  65. Arner EC. Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol. 2002;2:322–9.
  66. Rengel Y, Ospelt C, Gay S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther. 2007;9:221.
  67. Murphy G, Nagase H: Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol. 2008;4:128–35.
  68. Plaas A, Osborn B, Yoshihara Y, Bai Y, Bloom T, Nelson F, Mikecz K, Sandy JD. Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage. 2007;15:719–34.
  69. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434:644–8.
  70. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 2005;434:648–52.
  71. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Rev Immunol. 2006;6:772–83.
  72. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2006;115:911–9.
  73. Dayer JM, Chicheportiche R, Juge-Aubry C, Meier C. Adipose tissue has anti-inflammatory properties. Ann NY Acad Sci. 2006;1069:444–53.
  74. Matarese G, Moschos S, Mantzoros CS. Leptin in immunology, J Immunol. 2005;174:3137–42.
  75. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393:7–20.
  76. Lam QL, Lu L. Role of leptin in immunity. Cellul & Molecul Immunol. 2007;4:1–13.
  77. Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48:3118–29.
  78. Otero M, Lago R, Lago F, Reino JJ, Gualillo O. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res Ther. 2005;7:R581–91.
  79. Lago F, Dieguez C, Gómez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nature Clin Prat Rheumatol. 2007;3:716–24.
  80. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab. 2007;9:282–9.
  81. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439–51.
  82. Lago R, Gomez R, Otero M, Lago F, Gallego R, Dieguez C, et al. A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage. 2008;16:1101–9.
  83. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.
  84. Lee JH, Ort T, Ma K, Picha K, Carton J, Marsters PA, et al. Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro. Osteoarthritis Cartilage. 2009;17:613–20.
  85. Sandell LJ.Obesity and osteoarthritis. Is the leptin the link? Arthritis Rheum. 2009;60:2858–60.
  86. Filková M, Lisková M, Hulejová H, Haluzík M, Gatterová J, Pavelková A, et al. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis Ann Rheum Dis. 2009;68;295–6.
  87. Findlay DM. Vascular pathology in osteoarthritis. Rheumatology. 2007;46:1763–8.
  88. Hulejova´ H, Baresˆova´ V, Klézl Z, Polanska´ M, Adam A, Sˆenolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine. 2007;38:151–6.
  89. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology. (Oxford). 2005;44:7–16.
  90. Noble B. Bone microdamage and cell apoptosis. Eur Cell Mater. 2003;6:46–55.
  91. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21:605–15.
  92. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196:2–8.
  93. Mandalia V, Fogg AJ, Chari R, Murray J, Beale A, Henson JH. Bone bruising of the knee. Clin Radiol. 2005;60:627–36.
  94. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139:330–6.
  95. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54:1529–35.
  96. Zhai G, Blizzard L, Srikanth V, Ding C, Cooley H, Cicuttini F, et al. Correlates of knee pain in older adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum. 2006;55:264–71.
  97. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage. 2006;14:1081–5.
  98. Winet H, Hsieh A, Bao JY. Approaches to study of ischemia in bone. J Biomed Mater Res. 1998;43:410–21.
  99. Otter MW, Qin YX, Rubin CT, McLeod KJ. Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome? Med Hypotheses. 1999;53:363–8.
  100. Punzi L, Oliviero F, Plebani M. New biochemical insights into the pathogenesis of osteoarthritis and the role of laboratory investigations in clinical assessment. Crit Rev Clin Lab Sci. 2005;42:279–309.
  101. Lohmander LS. The role of molecular markers in monitor breakdown and repair. In: Reginster J-Y, Henrotin Y, Martel-Pelletier J and Pelletier J-P eds. Experimental and clinical aspects of osteoarthritis. Springer-Verlag, Heidelberg, 1999;296–311.
  102. Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, et al. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage. 2006;14:723–7.
  103. Altman RD, Lozada CJ. Laboratory findings in osteoarthritis. In: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM eds. Osteoarthritis. Saunders Philadelphia, 3rd edition 2001;273–91.
  104. Thonar EJ, Manicourt DH. Noninvasive markers in osteoarthritis. In: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM eds. Osteoarthritis. Saunders Philadelphia, 3rd edition 2001;293–313.
  105. Punzi L, Oliviero F, Ramonda R, Valvason C, Sfriso P, Todesco S. Laboratory investigations in osteoarthritis. Aging Clin Exp Res. 2003;15:373–9.
  106. Punzi L, Oliviero F, Ramonda R, Valvason C, Todesco S. Laboratory findings in osteoarthritis. Semin Arthritis Rheum. 2005;34/2S:58–61.
  107. Punzi L, Oliviero F, Sfriso P. Biomarkers of matrix fragments, inflammation markers in osteoarthritis. In Osteoarthritis, Inflammation and Degradation: A continuum. J.Buckwalter, M.Lotz and Stolz J-F Eds. IOS Press Amsterdam. 2007;267–79.
  108. Dayer E, Dayer J-M, Roux-Lombard P. Primer: the practical use of biological markers of rheumatic and systemic inflammatory diseases. Nature Clinical Practice Rheumatology. 2007;3:512–20.
  109. Spector TD, Hart DJ, Nandra D, Doyle DV, Mackillop N, Gallimore JR, et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 1997;40:723–7.
  110. Punzi L, Ramonda R, Oliviero F, Sfriso P, Mussap M, Plebani P, et al. Value of C-reactive protein determination in erosive osteoarthritis Ann Rheum Dis. 2005;64:965–7.
  111. Vignon E, Balblanc JC, Mathieu P, Louisot P, Richard M. Metalloprotease activity, phospholipase A2 activity and cytokine concentration in osteoarthritis synovial fluids. Osteoarthritis Cartilage. 1993;1:115–20.
  112. Ribbens C, Andre B, Kaye O, Kaiser MJ, Bonnet V, Jaspar JM, et al. Synovial fluid matrix metalloproteinase-3 levels are increased in inflammatory arthritides whether erosive or not. Rheumatology. (Oxford) 2000;39:1357–65.
  113. Garnero P, Mazières B, Gueguen A, Abbal M, Berdah L, Lequesne M, et al. Cross-sectional association of 10 molecular markers of bone cartilage, and synovium with disease activity and radiological joint damage in patients with hip osteoarthritis: the ECHODIAH cohort. J Rheumatol. 2005;32:697–703.
  114. Bobacz K, Maier R, Fialka C, Ekhart H, Woloszczuk W, Geyer G, et al. Is pro-matrix metalloproteinase-3 a marker for posttraumatic cartilage degradation? Osteoarthritis Cartilage. 2003;11:665–72.
  115. Goldberg RL, Huff JP, Lenz ME, Glickman P, Katz R, Thonar EJ. Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 1991;34:799–807.
  116. Sharif M, George E, Shepstone L, Knudson W, Thonar EJ, Cushnaghan J, et al. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum. 1995;38:760–7.
  117. Sharif M, Saxne T, Shepstone L, et al. Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint. Br J Rheumatol. 1995;34:306–10.
  118. Conrozier T, Saxne T, Fan CS, et al. Serum concentrations of cartilage oligomeric matrix protein and bone sialoprotein in hip osteoarthritis: a one year prospective study. Ann Rheum Dis. 1998;57:527–32.
  119. Dragomir AD, Kraus VB, Renner JB, Luta G, Clark A, Vilim V, Hochberg MC, Helmick CG, Jordan JM. Serum cartilage oligomeric matrix protein and clinical signs and symptoms of potential pre-radiographic hip and knee pathology. Osteoarthritis Cartilage. 2002;10:707–13.
  120. Bleasel JF, Poole AR, Heinegard D, Saxne T, Holderbaum D, Ionescu M, et al. Changes in serum cartilage marker levels indicate altered cartilage metabolism in families with the osteoarthritis-related type II collagen gene COL2A1 mutation. Arthritis Rheum. 1999;42:39–45.
  121. Williams FM, Andrew T, Saxne T, Heinegard D, Spector TD, MacGregor AJ. The heritable determinants of cartilage oligomeric matrix protein. Arthritis Rheum. 2006;54:2147–51.
  122. Mazières B, Garnero P, Guéguen A, Abbal M, Berdah L, Lequesne M, et al. Molecular markers of cartilage breakdown and synovitis at baseline as predictors of structural progression of hip osteoarthritis. The ECHODIAH Cohort. Ann Rheum Dis. 2006;65;354–9.
  123. Deberg M, Labasse A, Christgau S, Cloos P, Bang Henriksen D, et al. New serum biochemical markers (Coll 2-1 and Coll 2-1NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage. 2005;13:258–65.
  124. Ramonda R, Deberg M, Campana C, Frigato M, Bosselot A, Henrotin Y, Punzi L. Coll 2-1, Coll 2-1NO2 in erosive and non-erosive osteoarthritis of the hand. Osteoarthritis Cartilage. 2008;16(suppl 4):S56.
  125. Silvestri T, Pulsatelli L, Dolzani P, Punzi L, Meliconi R. Analysis of cartilage biomarkers in erosive and non-erosive osteoarthritis of the hand. Osteoarthritis Cartilage. 2004;12:843–5.
  126. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis of the knee. Arthritis Rheum. 1986;29:1039–49.
  127. Punzi L, Ramonda R, Sfriso P. Erosive osteoarthritis. Best Pract Res Clin Rheumatol. 2004;5:739–58.
  128. Zhang W, Doherty M, Leeb BF, Alekseeva L, Arden NK, Bijlsma JW, et al; ESCISIT EULAR evidence-based recommendations for the diagnosis of hand osteoarthritis: report of a task force of ESCISIT. Ann Rheum Dis. 2009;68:8–17.
  129. Tan AL, Grainger AJ, Tanner SF, et al. A high-resolution magnetic resonance imaging study of distal interphalangeal joint arthropathy in psoriatic arthritis and osteoarthritis. Are they the same? Arthritis Rheum. 2006;54:1328–33.
  130. Punzi L, Ramonda R. Phenotyping erosive osteoarthritis of the hand. Osteoarthritis Cartilage. 2008;16(Suppl 4):S10.
  131. Salaffi F, Carotti M, Grassi W. Health-related quality of life in patients with hip or knee osteoarthritis: comparison of generic and disease-specific instruments. Clin Rheumatol. 2005;24:29–37.
  132. Salaffi F, Leardini G, Canesi B, Mannoni A, Fioravanti A, Caporali R, et al. Reliability and validity of the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index in Italian patients with osteoarthritis of the knee. Osteoarthritis Cartilage. 2003;11:551–60.
  133. Punzi L, Ramonda R. Importance of self-reported health-related quality of life in identifying the needs of elderly people with osteoarthritis. Aging Clin Exp Res. 2005;17:253–4.
  134. Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, et al. Understanding the pain experience in hip and knee osteoarthritis. An OARSI/OMERACT initiative. Osteoarthritis Cartilage. 2008;16:415–22.
  135. Gossec L, Hawker GA, Davis AM, Maillefert JF, Lohmander S, Altman R, et al. OMERACT/OARSI initiative to define states of severity and indication for joint replacement in hip and knee osteoarthritis. An OMERACT 8 Special Interest Group. J Rheumatol. 2007;34:1432–5.
  136. Maillefert JF, Kloppenburg M, Fernandes L, Punzi L, Günther KP, Martin Mola E, et al. Multi-language translation and cross-cultural adaptation of the OARSI/OMERACT measure of intermittent and constant osteoarthritis pain (ICOAP). Osteoarthritis Cartilage. 2009;17:1293–6.
  137. Dominick KL, Ahern FM, Gold CH, Heller DA. Health-related quality of life and health service use among older adults with osteoarthritis. Arthritis Rheum. 2004;51:326–31.
  138. Wells KB, Steward A, Hays RD, Burnam MA, Rogers W, Daniels M, et al. The functioning and well-being of depressed patients: results from the Medical Outcomes Study. JAMA. 1989;262:914–9.
  139. Creamer P, Lethbridge-Cejku M, Hochberg MC. Factors associated with functional impairment in symptomatic knee osteoarthritis. Rheumatology. (Oxford) 2000;39:959–67.
  140. Lin EH, Katon W, Von Korff M, Tang L, Williams JW Jr, Kroenke K, et al. Effect of improving depression care on pain and functional outcomes among older adults with arthritis. JAMA. 2003;290:2428–34.
  141. Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JWJ, Dieppe P, et al. EULAR recommendations 2003: an evidence based medicine approach to knee osteoarthritis. Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis. 2003;62:1145–55.
  142. Zhang W, Doherty M, Arden N, Bannwarth B, Bijlsma J, Gunther KP, et al. EULAR evidence based recommendations for the management of hip osteoarthritis - report of a task force of the EULAR standing committee for international clinical studies including therapeutics (ESCISIT). Ann Rheum Dis. 2005;64:5:669–81.
  143. Zhang W, Doherty M, Leeb BF, Alekseeva L, Arden N, Bijlsma J, et al. EULAR evidence based recommendations for the management of hand osteoarthritis - report of a task force of the EULAR standing committee for international clinical studies including therapeutics (ESCISIT) Ann Rheum Dis. 2007;66:377–88.
  144. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage. 2007;15:981–1000.
  145. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008,16:137–62.
  146. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.
  147. Almarza AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng. 2004;32:2–17.
  148. Hui JH, Chen F, Thambyah A, Lee EH. Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop. 2004;24:427–33.
  149. Nixon AJ, Haupt JL, Frisbie DD, Morisset SS, McIlwraith CW, Robbins PD, et al. Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 2005;12:177–86.
  150. Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC. Osteoarthritis gene therapy. Gene Ther. 2004;11:379–89.
  151. Hannon GJ. RNA interference. Nature. 2002;418:244–51.
  152. Tu G, Xu W, Huang H, Li S. Progress in the development of matrix metalloproteinase inhibitors.Curr Med Chem. 2008;15:1388–95.
  153. Ho LJ, Lin LC, Hung LF, Wang SJ, Lee CH, Chang DM, et al. Retinoic acid blocks pro-inflammatory cytokine-induced matrix metalloproteinase production by down-regulating JNK-AP-1 signaling in human chondrocytes. Biochem Pharmacol. 2005;70:200–8.
  154. Finckh A, Gabay C. At the horizon of innovative therapy in rheumatology: new biologic agents. Curr Opin Rheumatol. 2008;20:269–75.
  155. Berenbaum F. New horizons and perspective in the treatment of osteoarthritis. Arthritis Res Ther 2008;10(Suppl2):S1–7.
  156. Bursavich MG, Gilbert AM, Lombardi S, Georgiadis KE, Reifenberg E, Flanneryb CR, et al. Synthesis and evaluation of aryl thioxothiazolidinone inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg Medicin Chem Lett 2007;17:1185–8.
  157. Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG 116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12 month, double-blind, placebo-controlled study. Arthritis Res Ther. 2007;9:R109.
  158. Chevalier X, Mugnier B, Bouvenot G. Targeted anti-cytokine therapies for osteoarthritis. Bull Acad Natl Med. 2006;190:1411–20.
  159. Caron JP, Fernandes JC, Martel-Pelletier J, Tardif G, Mineau F, Geng C, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis: Suppression of collagenase-1 expression. Arthritis Rheum. 1996;39:1535–44.
  160. Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22:742–50.
  161. Chevalier X, Giraudeau B, Conrozier T, Marliere J, Kiefer P, Goupille P. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol. 2005;32:1317–23.
  162. Chevalier X, Goupille P, Beaulieu AD, Burch FX, Bensen WG, Conrozier T, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61:344–52.
  163. Yang KG, Raijmakers NJH, van Arkel ERA, Caron JJ, Rijk PC, Willems WJ, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthritis Cartilage. 2008;16:498–505.
  164. Brzusek D, Petron D Treating knee osteoarthritis with intra-articular hyaluronans. Curr Med Res Opin. 2008;24:3307–22.
  165. Punzi L. The complexity of the mechanisms of action of hyaluronan in joint diseases. Clin Exp Rheumatol. 2001;19:242–6.
  166. Goldberg, VM; Buckwalter, JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage. 2005;13:216–24.
  167. Bellamy, N; Campbell, J; Robinson, V; Gee, T; Bourne, R; Wells, G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006 CD005321.
  168. Strauss EJ, Hart JA, Miller MD, Altman RD, Rosen JE. Hyaluronic acid viscosupplementation and osteoarthritis: current uses and future directions. Am J Sports Med. 2009;37:1636:44.