Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 140 No. 3536 (2010)

Are tyrosine kinase inhibitors promising for the treatment of systemic sclerosis and other fibrotic diseases?

  • C Beyer
  • O Distler
  • JH Distler
DOI
https://doi.org/10.4414/smw.2010.13050
Cite this as:
Swiss Med Wkly. 2010;140:w13050
Published
30.08.2010

Summary

Tissue fibrosis causes organ failure and death in patients with systemic sclerosis (SSc), but clearly effective anti-fibrotic therapies are not available. The tyrosine kinase inhibitor (TKI) imatinib, which blocks the pro-fibrotic c-Abl kinase and PDGF receptor, is currently evaluated in clinical proof-of-concept trials for the treatment of patients with SSc. In experimental models, imatinib efficiently prevented and reduced tissue fibrosis. First clinical case studies demonstrated anti-fibrotic effects of imatinib in selected patients with SSc and other fibrotic diseases, and observational studies in sclerotic chronic graft-versus-host disease showed promising results. Besides imatinib, the two novel TKIs of c-Abl and PDGF receptor nilotinib and dasatinib have recently proven efficacy in experimental models of SSc. The potential of TKIs of the VEGF receptor (e.g., semaxinib, vatalanib, sutent, and sorafenib) and the EGF receptor (e.g., erlotinib, gefitinib, lapatinib, and canertinib) as anti-fibrotic treatments are also discussed in this review. Prior to clinical use, however, controlled trials need to address efficacy as well as tolerability of TKIs in patients with different fibrotic diseases.

References

  1. Beyer C, Abraham D, Distler JH, Distler O. The pathogenesis of systemic sclerosis. In: Scleroderma – modern aspects of pathogenesis, diagnosis and therapy. Edited by Distler O. Bremen: UNI-MED Verlag AG; 2009: 23–32.
  2. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315(3):971–9.
  3. Ciardiello F, Tortora G: EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.
  4. Distler JH, Distler O. Intracellular tyrosine kinases as novel targets for anti-fibrotic therapy in systemic sclerosis. Rheumatology. (Oxford) 2008;47(Suppl 5):v10–11.
  5. Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54(1 Suppl):S10–19.
  6. Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16.
  7. Chen Y, Leask A, Abraham DJ, Pala D, Shiwen X, Khan K, et al. Heparan sulfate-dependent ERK activation contributes to the overexpression of fibrotic proteins and enhanced contraction by scleroderma fibroblasts. Arthritis Rheum. 2008;58(2):577–85.
  8. Akhmetshina A, Dees C, Pileckyte M, Maurer B, Axmann R, Jungel A. et al. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. Faseb J. 2008;22(7):2214–22.
  9. Distler JH, Jungel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56(1):311–22.
  10. Akhmetshina A, Venalis P, Dees C, Busch N, Zwerina J, Schett G, et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009;60(1):219–24.
  11. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, et al. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005;201(6):925–35.
  12. Wang S, Wilkes MC, Leof EB, Hirschberg R. Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. Faseb J. 2005;19(1):1–11.
  13. Yoshiji H, Noguchi R, Kuriyama S, Ikenaka Y, Yoshii J, Yanase K, et al. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G907–13.
  14. Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol. 2006;169(6):2254–65.
  15. Atallah E, Kantarjian H, Cortes J. Emerging safety issues with imatinib and other Abl tyrosine kinase inhibitors. Clin Lymphoma Myeloma. 2007;7(Suppl 3):S105–12.
  16. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.
  17. Distler JH, Distler O. Cardiotoxicity of imatinib mesylate: an extremely rare phenomenon or a major side effect? Ann Rheum Dis. 2007;66(6):836.
  18. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.
  19. Beham-Schmid C, Apfelbeck U, Sill H, Tsybrovsky O, Hofler G, Haas OA, et al. Treatment of chronic myelogenous leukemia with the tyrosine kinase inhibitor STI571 results in marked regression of bone marrow fibrosis. Blood. 2002;99(1):381–3.
  20. Bueso-Ramos CE, Cortes J, Talpaz M, O’Brien S, Giles F, Rios MB, et al. Imatinib mesylate therapy reduces bone marrow fibrosis in patients with chronic myelogenous leukemia. Cancer. 2004;101(2):332–6.
  21. Kay J, High WA. Imatinib mesylate treatment of nephrogenic systemic fibrosis. Arthritis Rheum. 2008;58(8):2543–8.
  22. Sabnani I, Zucker MJ, Rosenstein ED, Baran DA, Arroyo LH, Tsang P, et al. A novel therapeutic approach to the treatment of scleroderma-associated pulmonary complications: safety and efficacy of combination therapy with imatinib and cyclophosphamide. Rheumatology. (Oxford) 2009;48(1):49–52.
  23. Sfikakis PP, Gorgoulis VG, Katsiari CG, Evangelou K, Kostopoulos C, Black CM: Imatinib for the treatment of refractory, diffuse systemic sclerosis. Rheumatology. (Oxford) 2008;47(5):735–7.
  24. van Daele PL, Dik WA, Thio HB, van Hal PT, van Laar JA, Hooijkaas H, et al. Is imatinib mesylate a promising drug in systemic sclerosis? Arthritis Rheum. 2008;58(8):2549–52.
  25. Magro L, Mohty M, Catteau B, Coiteux V, Chevallier P, Terriou L, et al. Imatinib mesylate as salvage therapy for refractory sclerotic chronic graft-versus-host disease. Blood. 2009;114(3):719–22.
  26. Olivieri A, Locatelli F, Zecca M, Sanna A, Cimminiello M, Raimondi R, et al. Imatinib for refractory chronic graft-versus-host disease with fibrotic features. Blood. 2009;114(3):709–18.
  27. Distler JH, Manger B, Spriewald BM, Schett G, Distler O. Treatment of pulmonary fibrosis for twenty weeks with imatinib mesylate in a patient with mixed connective tissue disease. Arthritis Rheum. 2008;58(8):2538–42.
  28. Quintas-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond – exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol. 2009;6(9):535–43.
  29. Maurer B, Busch N, Jüngel A, Gay RE, Schett G, Michel BA, et al. Tyrosine Kinase Inhibitors (TKI) Are Promising Therapeutic Agents for the Proliferative Vasculopathy in SSc [abstract]. Arthritis Rheum. 2009;60(Suppl 10):1263.
  30. Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P et al: Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 2008;58(5):1475–84.
  31. Okutani D, Lodyga M, Han B, Liu M. Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol. 2006;291(2):L129–41.
  32. Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95(1):109–16.
  33. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. Embo J. 2002;21(8):1939–47.
  34. Drake CJ, Little CD. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci. USA 1995;92(17):7657–61.
  35. Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol. 2001;158(3):1145–60.
  36. Beyer C, Schett G, Gay S, Distler O, Distler JH. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 2009;11(2):220.
  37. Distler JH, Jungel A, Pileckyte M, Zwerina J, Michel BA, Gay RE, et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 2007;56(12):4203–15.
  38. Maurer B, Akhmetshina A, Gay RE, Schett G, Michel BA, Detmar M, et al. VEGF Aggravates Skin Fibrosis in Different Animal Models of Systemic Sclerosis (SSc) [abstract]. Arthritis Rheum. 2009;60(Suppl 10):1060.
  39. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol. 1997;151(6):1523–30.
  40. Liu JY, Morris GF, Lei WH, Corti M, Brody AR. Up-regulated expression of transforming growth factor-alpha in the bronchiolar-alveolar duct regions of asbestos-exposed rats. Am J Pathol. 1996;149(1):205–17.
  41. Madtes DK, Busby HK, Strandjord TP, Clark JG. Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol. 1994;11(5):540–51.
  42. Van Winkle LS, Isaac JM, Plopper CG. Distribution of epidermal growth factor receptor and ligands during bronchiolar epithelial repair from naphthalene-induced Clara cell injury in the mouse. Am J Pathol. 1997;151(2):443–59.
  43. Waheed S, D’Angio CT, Wagner CL, Madtes DK, Finkelstein JN, Paxhia A, et al. Transforming growth factor alpha (TGF(alpha)) is increased during hyperoxia and fibrosis. Exp Lung Res. 2002;28(5):361–72.
  44. Hardie WD, Davidson C, Ikegami M, Leikauf GD, Le Cras TD, Prestridge A, et al. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1217–25.
  45. Cho HJ, Kang JH, Kim T, Park KK, Kim CH, Lee IS, et al. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J Cell Biochem. 2009;107(2):335–44.
  46. Yamane K, Ihn H, Tamaki K. Epidermal growth factor up-regulates expression of transforming growth factor beta receptor type II in human dermal fibroblasts by phosphoinositide 3-kinase/Akt signaling pathway: Resistance to epidermal growth factor stimulation in scleroderma fibroblasts. Arthritis Rheum. 2003;48(6):1652–66.